本文目录一览

1,怎么制作神奇的莫比乌斯带

找张纸,剪成一条丝带,把丝带翻个圈在封住口
不明白楼主的意思!!不知道“莫比乌斯带”是什么东东?

怎么制作神奇的莫比乌斯带

2,神奇的莫比乌斯带的原理是什么求帮助

莫比乌斯带是二维不可定向流形(nonorientable 2d maniford)中一个重要的例子。对它的构造并不是要得出什么结论,而是代数拓扑学家构造出的各种具体流形的其中一个。数学的抽象是建立在许许多多具体实例上的,因为我们知道了许多种种曲面的例子,所以才能抽象出二维流形的概念。
莫比乌斯带是什么原理
我比乌斯带的神奇规律是什么呢?
应该是粘在一起的地方有问题,我用双面胶做过,一面粘,一面不粘,粘在一起的地方会发生交错,行成了不跨过边缘就可以走过整个曲面的道理。
看过问题后,我想了半天。唯一我能想到的回答是:莫比乌斯带很神奇。。

神奇的莫比乌斯带的原理是什么求帮助

3,莫比乌斯带是什么

普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。
莫比乌斯带(m?bius strip或者m?bius band),又译梅比斯环或麦比乌斯带,是一种拓扑学结构,它只有一个面(表面),和一个边界。它是由德国数学家、天文学家莫比乌斯(august ferdinand m?bius)和约翰·李斯丁(johhan benedict listing)在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦类似。

莫比乌斯带是什么

4,麦比乌斯带是什么意思

将长方形的两条对边重合,使得处于对角线上的两个点分别重合,就形成了莫比乌斯带,莫比乌斯带是双侧曲面,它具有这样的特点:莫比乌斯带一侧上的点沿着不经过莫比乌斯带的连续曲线移动可以到达另一侧,并且莫比乌斯带可以分开成为两个单侧曲面,多元函数积分学里面讲第二类曲面积分时要讲的……
 公元1858年,莫比乌斯发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。   因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!   我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。   拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!

5,莫比乌斯带神奇在哪

莫比乌斯带神奇在:  “莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。  莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。 莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。
沿着一个方向可以从一个面走到背面去,在打印机色带上有具体应用。再看看别人怎么说的。

6,莫比乌斯环是

应该是莫比乌斯带吧 公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。 因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘! 我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。 拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈! 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
麦比乌斯圈(m?bius&nbsp;strip,&nbsp;m?bius&nbsp;band)是一种单侧、不可定向的曲面。因a.f.麦比乌斯(august&nbsp;ferdinand&nbsp;m?bius,&nbsp;1790-1868)发现而得名。将一个长方形纸条abcd的一端ab固定,另一端dc扭转半周后,把ab和cd粘合在一起&nbsp;,得到的曲面就是麦比乌斯圈。<br><br><br>莫比乌斯环: <a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fbaike.baidu.com%2fview%2f332867.htm" target="_blank">http://baike.baidu.com/view/332867.htm</a><br><br><br>应该不会,因为是始终在沿着一个方向走,就象跑圈一样,当你跑一圈回到起点时你的左右方向和你起跑时应该一样的嘛!!<br><br><b>o(∩_∩)o 如果我的回答对您有帮助,记得采纳哦,感激不尽。</b><br><br>

文章TAG:神奇  莫比乌斯  莫比乌斯带  乌斯  神奇的莫比乌斯带  
下一篇