三至,小亚小巧小胖三人到超市共花了2585元小亚和小巧共花了1398元
来源:整理 编辑:律生活 2024-01-03 23:54:18
本文目录一览
1,小亚小巧小胖三人到超市共花了2585元小亚和小巧共花了1398元
小亚小巧小胖三人到超市共花了25.85元,小亚和小巧共花了13.98元,小巧和小胖共花了15.25元。小亚小巧小胖三人各花了多少元?小亚 25.85-15.25=10.60元,小巧 13,98-10.60=3.38元,小胖 15.25-3.38=11.87元.
2,三更是晚上几点
更点———古代把晚上戌时作为一更,亥时作为二更,子时作为三,丑时为四,寅时为五更。把一夜分为五更,按更击鼓报时,又把每更分为五点。每更就是一个时辰,相当于现在的两个小时,即120分钟,所以每更里的每点只占24分钟。由此可见“四更造饭,五更开船”相当于现在的“后半夜1时至3时做饭,3时至5时开船”。“五更三点”相当于现在的早晨5时又72分钟,即6时12分,“三更四点”相当于现在的午夜1时又96分钟,即2时36分。
3,午时是啥时候
1. 古代计时法将一天一夜分为十二时辰,上午十一点到下午一点为午时。亦泛指中午前后。 中国古时把一天划分为十二个时辰,每个时辰相等於现在的两小时。相传古人根据中国十二生肖中的动物的出没时间来命名各个时辰。 十二时辰制。西周时就已使用。汉代命名为夜半、鸡鸣、平旦、日出、食时、隅中、日中、日昳、晡时、日入、黄昏、人定。又用十二地支来表示,以夜半二十三点至一点为子时,一至三点为丑时,三至五点为寅时,依次递推。 【午时】日中,又名日正、中午等:(上午11时正至下午 1 时正)。这时候太阳最猛烈,相传这时阳气达到极限,阴气将会产生,而马是阴类动物。指上午十一点至下午一点,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O,互相帮助,祝共同进步!
4,古代的十二个时辰分别是什么
古代十二时辰【子时】夜半,又名子夜、中夜:十二时辰的第一个时辰。(北京时间23时至01时)。【丑时】鸡鸣,又名荒鸡:十二时辰的第二个时辰。(北京时间01时至03时)。【寅时】平旦,又称黎明、早晨、日旦等:时是夜与日的交替之际。(北京时间03时至05时)。【卯时】日出,又名日始、破晓、旭日等:指太阳刚刚露脸,冉冉初升的那段时间。(北京时间05时至07时)。【辰时】食时,又名早食等:古人“朝食”之时也就是吃早饭时间,(北京时间07时至09时)。【巳时】隅中,又名日禺等:临近中午的时候称为隅中。(北京时间09 时至11时)。【午时】日中,又名日正、中午等:(北京时间11时至13时)。【未时】日昳,又名日跌、日央等:太阳偏西为日跌。(北京时间13时至15时)。【申时】哺时,又名日铺、夕食等:(北京时间15食至17时)。【酉时】日入,又名日落、日沉、傍晚:意为太阳落山的时候。(北京时间17是至19时)。【戌时】黄昏,又名日夕、日暮、日晚等:此时太阳已经落山,天将黑未黑。天地昏黄,万物朦胧,故称黄昏。(北京时间19时至21时)。【亥时】人定,又名定昏等:此时夜色已深,人们也已经停止活动,安歇睡眠了。人定也就是人静。(北京时间21时至23时)。子时:前一天的23点到第二天1点丑时:1点到3点寅时:3点到5点卯时:5点到7点辰时:7点到9点巳时:9点到11点午时:11点到13点未时:13点到15点申时:15点到17点酉时:17点到19点戌时:19点到21点亥时:21点到23点在中国传统文化中,一昼夜划分为十二个时辰,每个时辰相当于现在两个小时,十二个时辰用十二地支的名字命名,即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;每个时辰分为三个部分,为初时、正时和末时;每天的半夜十一点至凌晨一点为子时,其余类推。由此可见,中国传统上新一天的分界线是午夜十一点,而不是现行公历使用的十二点(零点)【子时】夜半,又名子夜、中夜:十二时辰的第一个时辰。(北京时间23时至01时)。【丑时】鸡鸣,又名荒鸡:十二时辰的第二个时辰。(北京时间01时至03时)。【寅时】平旦,又称黎明、早晨、日旦等:时是夜与日的交替之际。(北京时间03时至05时)。【卯时】日出,又名日始、破晓、旭日等:指太阳刚刚露脸,冉冉初升的那段时间。(北京时间05时至07时)。【辰时】食时,又名早食等:古人“朝食”之时也就是吃早饭时间,(北京时间07时至09时)。【巳时】隅中,又名日禺等:临近中午的时候称为隅中。(北京时间09 时至11时)。【午时】日中,又名日正、中午等:(北京时间11时至13时)。【未时】日昳,又名日跌、日央等:太阳偏西为日跌。(北京时间13时至15时)。【申时】哺时,又名日铺、夕食等:(北京时间15食至17时)。【酉时】日入,又名日落、日沉、傍晚:意为太阳落山的时候。(北京时间17是至19时)。【戌时】黄昏,又名日夕、日暮、日晚等:此时太阳已经落山,天将黑未黑。天地昏黄,万物朦胧,故称黄昏。(北京时间19时至21时)。【亥时】人定,又名定昏等:此时夜色已深,人们也已经停止活动,安歇睡眠了。人定也就是人静。(北京时间21时至23时)。就是这样拉~【子时】夜半,又名子夜、中夜:十二时辰的第一个时辰。(北京时间23时至01时)。【丑时】鸡鸣,又名荒鸡:十二时辰的第二个时辰。(北京时间01时至03时)。【寅时】平旦,又称黎明、早晨、日旦等:时是夜与日的交替之际。(北京时间03时至05时)。【卯时】日出,又名日始、破晓、旭日等:指太阳刚刚露脸,冉冉初升的那段时间。(北京时间05时至07时)。【辰时】食时,又名早食等:古人“朝食”之时也就是吃早饭时间,(北京时间07时至09时)。【巳时】隅中,又名日禺等:临近中午的时候称为隅中。(北京时间09 时至11时)。【午时】日中,又名日正、中午等:(北京时间11时至13时)。【未时】日昳,又名日跌、日央等:太阳偏西为日跌。(北京时间13时至15时)。【申时】哺时,又名日铺、夕食等:(北京时间15食至17时)。【酉时】日入,又名日落、日沉、傍晚:意为太阳落山的时候。(北京时间17是至19时)。【戌时】黄昏,又名日夕、日暮、日晚等:此时太阳已经落山,天将黑未黑。天地昏黄,万物朦胧,故称黄昏。(北京时间19时至21时)。【亥时】人定,又名定昏等:此时夜色已深,人们也已经停止活动,安歇睡眠了。人定也就是人静。(北京时间21时至23时)。就是这样拉~分别子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥
5,余尝谓读书有三到的全文及翻译是什么
原文:余尝谓,读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急⒆。心既到矣,眼口岂不到乎?翻译:读书时要读得响亮,不能错一个字,不能少一个字,不能多一个字,不能颠倒一个字,不能强记或笼统记住,只要多读几遍,自然朗朗上口,很久都不会忘。古人说:读书百遍,其意自现。说的是读熟了,则不用解说,自己知道意思。我曾经说,读书有三道,心到,眼到,口到。心不在这儿,那么就看不仔细,心眼不一致,只能漫不经心地读,不会记住,就算记住也不会太久。三到之中,心到最重要。心都到了,眼睛与嘴怎么不会到呢?原文:余尝谓,读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急⒆。心既到矣,眼口岂不到乎?翻译:读书时要读得响亮,不能错一个字,不能少一个字,不能多一个字,不能颠倒一个字,不能强记或笼统记住,只要多读几遍,自然朗朗上口,很久都不会忘。古人说:读书百遍,其意自现。说的是读熟了,则不用解说,自己知道意思。我曾经说,读书有三道,心到,眼到,口到。心不在这儿,那么就看不仔细,心眼不一致,只能漫不经心地读,不会记住,就算记住也不会太久。三到之中,心到最重要。心都到了,眼睛与嘴怎么不会到呢 ?我曾经说,读书有三道,心到,眼到,口到。心不在这儿,那么就看不仔细,心眼不一致,只能漫不经心地读,不会记住,就算记住也不会太久。三到之中,心到最重要。心都到了,眼睛与嘴怎么不会到呢?付费内容限时免费查看回答稍等原文:余尝谓,读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急⒆。心既到矣,眼口岂不到乎?翻译:读书时要读得响亮,不能错一个字,不能少一个字,不能多一个字,不能颠倒一个字,不能强记或笼统记住,只要多读几遍,自然朗朗上口,很久都不会忘。古人说:读书百遍,其意自现。说的是读熟了,则不用解说,自己知道意思。我曾经说,读书有三道,心到,眼到,口到。心不在这儿,那么就看不仔细,心眼不一致,只能漫不经心地读,不会记住,就算记住也不会太久。三到之中,心到最重要。心都到了,眼睛与嘴怎么不会到呢翻译:读书时要读得响亮,不能错一个字,不能少一个字,不能多一个字,不能颠倒一个字,不能强记或笼统记住,只要多读几遍,自然朗朗上口,很久都不会忘。古人说:读书百遍,其意自现。说的是读熟了,则不用解说,自己知道意思。我曾经说,读书有三道,心到,眼到,口到。心不在这儿,那么就看不仔细,心眼不一致,只能漫不经心地读,不会记住,就算记住也不会太久。三到之中,心到最重要。心都到了,眼睛与嘴怎么不会到呢 ?推荐于 2019-10-11查看全部43个回答叫叫阅读3-12岁儿童阅读前三,让孩子爱上阅读值得一看的阅读理解相关信息推荐专注孩子阅读12年,每天15分钟,培养孩子逻辑思维,让孩子敢说,敢读,更敢写让孩子赢在起跑线,学习阅读方法和技巧,让孩子更有自信。act.jojoreading.com广告!「多动症」如何使孩子爱上学习 几招提高学习成绩值得一看的爱上学习相关信息推荐!如何使孩子爱上学习,孩子学习成绩差,并有易冲动发怒,做事拖拉,好动,注意力不集中等,这都是多动症在作怪。多动并不是孩子调皮,需到正规医院检查治疗。qianhu.wejianzhan.com广告更多专家《余尝谓读书有三到》的全文及翻译是什么?专家1对1在线解答问题5分钟内响应 | 万名专业答主马上提问最美的花火 咨询一个职场问题,并发表了好评lanqiuwangzi 咨询一个职场问题,并发表了好评garlic 咨询一个职场问题,并发表了好评188****8493 咨询一个职场问题,并发表了好评篮球大图 咨询一个职场问题,并发表了好评动物乐园 咨询一个职场问题,并发表了好评AKA 咨询一个职场问题,并发表了好评出自宋代朱熹的《读书要三到》凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,“读书百遍,其义自见”。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急。心既到矣,眼口岂不到乎?完善译文及注释译文只要是读书,就要每个字都读得很大声,不可以读错一个字,不可以少读一个字,不可以多读一个字,不可以读颠倒一个字,不可以勉强硬记,只要多读几遍,自然而然就顺口而出,即使时间久了也不会忘记。古人说过:“读书百遍,其义自见。”就是说书读得熟了,那么不依靠别人解释说明,自然就会明白它的道理了。我曾经说过:读书有三到,谓心到、眼到、口到。心思不在书本上,那么眼睛就不会仔细看,心和眼既然不专心致志,却只是随随便便地读,就一定不能记住,即使记住了也不能长久。三到之中,心到最重要 。心既然已经到了,眼和口难道会不到吗?注释误:错。倒:颠倒。牵强暗记:勉强默背大意。见:同“现”,表露出来。晓:知道。漫浪:随随便便,漫不经心。急:重要,要紧。矣:相当于“了”岂:难道。乎:吗,语气词。余尝谓:我曾经说过。谓,说。全文:余尝谓读书有三道,谓心到、眼到、口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急。心既到以,眼口岂不到乎? 一一[宋]朱熹(出自义务教育教科书五四学制,教育部审定,2019年五年级上册第25课。)翻译:我(朱熹)曾经说过读书有三到,就是心到、眼到、口到。心不在书本上,那么眼睛就不会看仔细,心和眼既然不专心一意,却只是随随便便的诵读,那一定不能记住,即使记住了也不能长久。三到之中,心到最为重要。心都到了,眼睛难道不会看仔细,嘴不会好好读吗?
6,三元一次方程组的解法步骤是
会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力.
重点、难点:
三元一次方程组的解法.解法的技巧.
重点难点分析:
1.三元一次方程的概念
三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,
2a-3b+c=0等都是三元一次方程.
2.三元一次方程组的概念
一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.
例如, 等都是三元一次方程组.
三元一次方程组的一般形式是:
3.三元一次方程组的解法
(1)解三元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.
(2)怎样解三元一次方程组?
解三元一次方程组例题
1.解方程组
法一:代入法
分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.
解:由(2),得
x=y+1. (4)
将(4)分别代入(1)、(3)得
解这个方程组,得
把y=9代入(4),得x=10.
因此,方程组的解是
法二:加减法
解:(3)-(1),得
x-2y=-8 (4)
由(2),(4)组成方程组
解这个方程组,得
把x=10,y=9代入(1)中,得 z=7.
因此,方程组的解是
法三:技巧法
分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组
解:由(1)+(2)-(3),得 y=9.
把y=9代入(2),得
x=10.
把x=10,y=9代入(1),得 z=7.
因此,方程组的解是
注意:
(1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出.
(2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确
求解方程组.
2.解方程组
分析:在这个方程组中,方程(1)只含有两个未知数x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程组.
解:(2)×3+(3),得11x+7z=29,
(4)
把方程(1),(4)组成方程组
解这个方程组,得,
把x=-,z=5代入(2)得3(-)+2y+5=8,所以y=
因此,方程组的解是
3.解方程组
分析:用加减法解,应选择消去系数绝对值的最小公倍数最小的未知数.
解:(1)+(3),得
5x+5y=25.(4)
(2)+(3)×2,得 5x+7y=31.(5)
由(4)与(5)组成方程组
解这个方程组,得
把x=2,y=3代入(1),得3×2+2×3+z=13,
所以
z=1.
因此,方程组的解是
4.解方程组
分析:题目中的y:x=3:2,即y=
法一:代入法
解:由(2)得x=y (4)
由(3)得z= (5)
将(4),(5)代入(1),得+y+y=111
所以
y=45.
把y=45分别代入(4)、(5),得x=30,z=36.
因此,方程组的解是
法二:技巧法
分析:y∶x=3∶2,即x∶y=2∶3=10∶15,而y∶z=5∶4=15∶12,故有x∶y∶z=10∶15∶12.因此,可设x=10k,y=15k,z=12k.将它们一起代入(1)中求出k值,从而求出x、y、z的值.
解:由(2),得x∶y=2∶3,
即x∶y=10∶15.
由(3),得y∶z=5∶4,
即y∶z=15∶12.
所以
x∶y∶z=10∶15∶12.
设x=10k,y=15k,z=12k,代入(1)中得10k+15k+12k=111,
所以
k=3.
故x=30,y=45,z=36.
因此,方程组的解是
5.解方程组
分析:
1) 观察原方程组,我们准备先消去哪一个未知数?
2)
为什么要先消去z?注意到三个方程中都含有三个未知数,而在方程(3)中z一项的系数是-1,所以未
知数z易消.
3)
怎样在(1)和(2)中消去z?
4) 解这个关于x、y的方程组,求x和y的值是多少?
5) 怎样去求z的值?能不能把x=5,
y=0代入(3)中去求z?
解:(1)+(3)×4 得17x+5y=85 …
(4)
(3)×3-(2) 得7x-y=35 … (5)
(4)、(5)组成方程组
解得
把x=5, y=0代入(3),得15-z=18,
所以z=-3, 所以
总结:解三元一次方程组的一般步骤:
1.利用代入法或加减法,把方程组中的某一个未知数消去,得到关于另外两个未知数的二元一次方程
组;
2.解这个二元一次方程组,求出这两个未知数的值;
3.将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;
4.解这个一元一次方程,求出最后一个未知数的值;
5.将求得的三个未知数的值用“{”合写在一起,即可.
练习:
1.解方程组
2.解方程组
3.已知方程组 的解使代数式x-2y+3z的值等于-10,求a的值.
练习答案
1.
分析:根据各方程中系数的特点,将方程(1)分别与方程(2)、方程(3)组成两组,利用加减法消去y比较简便.
解:(1)+(2), 有
5x-z=14 (4)
(1)+(3), 有 4x+3z=15 (5)
再解由(4)、(5)构成的二元一次方程组
(4)×3, 得15x-3z=42 (6)
(5)+(6),得19x=57,
x=3.
把x=3代入(4),得z=1.
∴
把x=3, z=1代入(3),得y=8.
因此,方程组的解是
注意:解三元一次方程组,要先根据各方程的特点,灵活地确定消元步骤和消元方法,不要盲目消元.
2.
法-:代入法
解:由(1),得3y=2x,
(4)
由(2)得 5z=y, (5)
把(4)和(5)代入(3),得,
解得y=10.
把y=10分别代入(4)和(5),得
因此,方程组的解是
法二:技巧法
解:由(1),得x∶y=15∶10(根据分数的基本性质),
由(2),得y∶z=10∶2.
∴
x∶y∶z=15∶10∶2.
设x=15k, y=10k, z=2k 并代入(3),
得15k+10k-2×2k=21,解得
k=1.
∴ x=15, y=10, z=2.
∴
小结:此方程组是三元一次方程组,这类方程组一般有两种基本解法,一是将比例式化为等积式,把(1)变为,(2)变为,然后代入(3),可消去两个未知数x和z,得到关于y的一元一次方程;二是把方程(1)和(2)的两个比统一为x∶y∶z=15∶10∶2然后设每一份为k,即x=15k,
y=10k, z=2k,代入方程(3)可求出k,进而求得x, y, z的值.
3.
分析:由题意可知,此方程组中的a是已知数,x、y、z是未知数,先解方程组,求出x、y、z(含有a的代数式),然后把求得的x、y、z代入等式x-2y+3z=-10,可得关于a的一元一次方程.解这个方程,即可求得a的值.
法-:
解:(2)-(1),得z-x=2a
(4)
(3)+(4),得2z=6a, z=3a.
把z=3a分别代入(2)和(3),得y=2a,
x=a.
∴
把x=a, y=2a, z=3a代入x-2y+3z=-10,
得a-2×2a+3×3a=-10, 解得.
法二:技巧解法
解:(1)+(2)+(3),得2(x+y+z)=12a,
即x+y+z=6a
(4)
(4)-(1),得z=3a;
(4)-(2),得x=a;
(4)-(3),得y=2a.
∴以下同解法-,略.
注意:当方程组中三个方程的未知数的系数都相同时,可以运用此题解法二中的技巧解这类三元一次方程组.
文章TAG:
小亚 小巧 小胖 三人 三至