本文目录一览

1,下列说法正确的是

答案B解析:蛋白质工程的目标是根据人们对蛋白质功能的特定需求,对蛋白质的结构进行分子设计。其中,基因工程是关键技术,是蛋白质工程的基础,因为对蛋白质结构的改造是通过改造基因来实现的,所以蛋白质工程是在基因水平上改造蛋白质,改造后的蛋白质不再是天然的蛋白质。

2,第二代基因工程

第二代基因工程也就是蛋白质工程蛋白质工程是以蛋白质结构功能关系的知识为基础,通过周密的分子设计,把蛋白质改造为合乎人类需要的新的突变蛋白质。1983年,美国生物学家额尔默首先提出了“蛋白质工程”的概念。蛋白质工程的实践依据DNA指导合成蛋白质,因此,人们可以根据需要对负责编码某种蛋白质的基因进行重新设计,使合成出来的蛋白质的结构变得符合人们的要求。由于蛋白质工程是在基因工程的基础上发展起来的,在技术方面有诸多同基因工程技术相似的地方,因此蛋白质工程也被称为第二代基因工程。

3,药物合成设计有哪几种

《药物合成设计》介绍了化学药物的设计与合成是现代药物研究与生产的一项最重要的核心技术。一个好的药物分子设计方案或含量极微的天然先导化合物,如果不能用化学方法合成出来,那就什么研究也开展不了。一个很好的候选药物即便可以合成出来,但如果成本太高难以实现产业化生产,还是不能成为药物。市场上非常畅销的药物,如果生产厂家很多,市场竞争会十分激烈,这时先进的低成本合成工艺就成为生产企业的生命线。因此,对于药物研究、生产或相关技术服务的从业人员来说,熟练地掌握药物合成设计技术是必不可少的至胜法宝。

药物合成设计有哪几种

4,酰基与羰基的区别是

酰基是羧基r-c=o-oh失去羟基后剩下的部分。而羰基一般就指碳氧双键,可以包含酰基。
羰基指的是单独的碳氧双键,其中碳氧双键可以与烃基相连构成酰基,也可以与其他基团例如氨基、金属原子等相连;而酰基则必须是碳氧双键与烃基相连才可被称为酰基,例如乙酰基(CH3CO-),苯甲酰基(C6H5CO-)。
羰基是两个键都能连基团的原子团,而酰基则是一端已经连上了一个烃基,只空余另一端的原子团
区别如下:一、概念不同1、酰基:酰基指的是有机或无机含氧酸去掉羟基后剩下的一价原子团,通式为RM(O)-。在有机化学中,酰基主要指具有结构的基团。2、羰基:羰基是由碳和氧两种原子通过双键连接而成的有机官能团(-C=O-)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。二、性质不同1、酰基:醛、酮、羧酸、羧酸衍生物等几乎都有酰基。酰基中的M原子都为碳,但硫、磷、氙等原子也可以形成类似的酰基化合物,如四氟一氧化氙、硫酰氯、氯化亚砜。此类酰卤一般称为卤氧化物。酰基是一端已经连上了一个烃基,只空余另一端的原子团。2、羰基:具有强红外吸收的物理性质;由于氧的强吸电子性,碳原子上易发生亲核加成反应,具有亲核还原反应,羟醛缩合反应的化学性质。三、特征不同1、酰基:酰基不是一种区别有机物类别的基团。有机化合物分子中的氮、氧、碳等原子上引入酰基的反应统称为酰化,但习惯上把碳原子上引入硝基、磺基和羧基(羧基可作为碳酸的酰基)的反应分别叫硝化、磺化和羧基化。羧酸衍生物中酰基中的羰基不如醛、酮中的活泼,但仍能发生一系列的加成-消除反应。当酰基与苯环相连时,可使苯环致钝,再进基主要进入其间位。2、羰基:在进行金属羰基配合物的分析时,常会使用红外吸收光谱法。在一氧化碳气体,C-O键的振动(一般以νCO表示)出现在光谱中2143cm-1的位置。νCO的位置和金属和碳之间键结强度呈现负相关的关系。除了振动的频率外,频谱中νCO的个数也可用来分析配合物的结构,八面体结构旳配合物(如Cr(CO)6),其频谱只有一个νCO。对称性较弱的配合物,其频谱也会比较复杂。扩展资料:1、常见的的酰基化合物:(1)磺酰基药物含磺酰基药物在临床治疗药物中占有相当比重, 将磺酰基引入到小分子中是药物分子结构改造的重要策略之一。磺酰基在药物分子设计中的应用,就结构而言,磺酰基和羰基、羧基、四氮唑、磷酸基具有相似的大小和电荷分布,可以作为它们的生物电子等排体而引入到小分子中,从而保持或增强小分子的生物活性。磺酰基具有独特的物理化学性质,磺酰基的引入可以调节小分子的溶解性和酸碱性; 磺酰基能提供两个氢键受体, 合理的引入磺酰基可以通过增加小分子和作用靶标的氢键相互作用而提高化合物的生物活性。磺酰基结构较稳定,引入磺酰基可以通过阻断易代谢位点而提高药物代谢稳定性, 延长其作用时间,提高其生物利用度, 从而改善小分子的药代动力学性质。(2)咖啡酰基奎宁酸咖啡酰基奎宁酸类化合物是一类由奎宁酸和一个或多个咖啡酸通过酯化反应缩合而成的酚酸类天然化合物,广泛存在于植物之中,具有多种药理活性,如抗氧化、抗炎、抗微生物、酶抑制及肝细胞保护等作用。2、常见的的羰基化合物:R─CO─OH 羧酸R─CO─OR′ 羧酸酯R─CO─O─CO─R′ 酸酐R─CO─O─O─CO─R′ 酰基过氧化物R─CO─NH2 酰胺
首先,乙酰乙酸乙酯的结构式写错了,应该是CH3COCH2COOCH2CH3,含有酯基,所以是酯类。

5,现代化学前沿大体上可分为哪两大类

现代化学就是当前存在的化学研究和化学进展以及相关化学的知识和研究内容.现代化学发展的特点和方向 经过约200多年的努力,化学进入现代时期.总结起来说现代化学有五大特点和两个发展方向.  五大特点是  (1)化学家对物质的认识和研究,从宏观向微观深入.20世纪以来,化学家已用实验打开原子大门,深入地了解原子内部的情况,并且用量子理论探讨原子内的电子排布、能量变化等.就是对复杂的化学反应来说,也可以测量反应机理,了解反应过渡态的情况以及分子、原子间能量的交换.  (2)从定性和半定量化向高度定量化深入.虽然近代化学也曾广泛地使用各种定量化工具,但是还只能说停留在定性和半定量化水平.本世纪60年代后,电子计算机大规模地引进化学领域,用它来计算分子结构已取得巨大的成功.如今任何化学论文如无详尽的定量数据就难以发表,发表了也难取得公认.而且如今化学实验的精密度愈来愈高,几乎所有仪器都是定量化的,有的还用电子计算机来控制.  (3)对物质的研究从静态向动态伸展.近代化学对物质的研究基本上停留在静态的水平或从静态出发,推出一些动态情况.例如,从热力学定律出发,通过状态函数的变化,从始态及终态情况推断反应变化中一些可能情况.现代化学已摆脱这种间接研究推理,而采用直接的方法去了解或描述动态情况,特别是激光技术、同位素技术、微微秒技术、分子束技术在现代化学里的大规模应用.化学家目前已能了解皮秒内微粒运动的情况,反应中化学键的断裂以及能量交换等情况.特别值得一提的是有关动态薛定谔方程的研究,一旦成功它将会为动态研究开辟光辉前景.  (4)由描述向推理或设计深化.近代化学几乎全凭经验,主要通过实验来了解和阐述物质.虽然也有一些理论如溶液理论、结构理论等可以指示研究方向,但总体来说近代化学基本上是描述性的.原来化学中四大学科(无机化学、有机化学、分析化学、物理化学)彼此存在很大独立性.然而现代化学已打破传统的界限,化学不仅自身各学科相互渗透,而且跟物理、生物、数学、医学等学科相互交融和渗透.特别是近年量子化学的发展,已渗透到各学科,使化学摆脱历史传统,可以预先预测和推理,然后用实验来验证或合成.例如,当今许多高难度的合成工作都事先根据理论设计,然后决定合成路线.著名的维生素B12的合成工作就是一个典范,它标志着化学已从描述向设计飞跃.  (5)向研究分子群深入.近代化学对化学的研究通常只停留在一个或几个分子间的作用.即所谓0级、1级、2级、3级反应,对多分子的反应是无能为力的.但是近代化学远远不能满足实际需要了,特别是研究生物体内的化学反应,就要研究多个分子甚至一大群分子间的反应了.例如,一个活细胞内往往需要几十种酶作催化剂,同时催化许多化学反应.因此研究分子群关系,已成为现代化学的一个特点.  现代化学的发展方向,一是化学向分子设计方向前进.分子设计就是说化学家像建筑师造房子那样设计好再建造.由于电子计算机、各种能谱技术、微微秒技术、激光技术、同位素技术等在化学上的应用,使分子设计逐渐趋向现实.上面说过的著名有机合成大师伍德沃德合成难度极大的维生素B12,就是按他创立的前沿轨道理论出发,计算后设计出最佳合成路线和原料配比,一举成功并传为佳话.目前全世界每年合成几千种抗癌药,大都是先设计好合成路线,而后进入生产的.  现代化学第二个发展方向是向分子群研究进军.在自然界中生物的活动常常同时发生几十个甚至几百个化学反应,才能使生物体生命延续.就是完成一项简单工作也必须是多个分子同时工作才能实现.例如,根瘤菌体内的固氮酶,就有两种蛋白质分子,一种是含铁的,另一种是含钼的,这两种分子必须同时工作才能把氮气固定下来.目前化学家已合成主要生命基础物质,并引进酶技术、仿生技术、膜技术等,使研究分子群的情况成为可能.这也是为揭开生命秘密做好基础工作.  总之,现代化学的特点决定现代化学的发展方向,反过来现代化学的发展方向也决定现代化学的五大特点,它们是相辅而成、相得益彰的.
同问。。。

6,蛋白质工程研究进展

蛋白质工程的研究进展及前景展望 1 蛋白质工程的由来和目标蛋白质工程是在基因工程冲击下应运而生的。基因工程的研究与开发是以遗传基因,即脱氧核糖*为内容的。这种生物大分子的研究与开发诱发了另一个生物大分子蛋白质的研究与开发。这就是蛋白质工程的由来。它是以蛋白质的结构及其功能为基础,通过基因修饰和基因合成对现存蛋白质加以改造,组建成新型蛋白质的现代生物技术。这种新型蛋白质必须是更符合人类的需要。因此,有学者称,蛋白质工程是第二代基因工程。其基本实施目标是运用基因工程的DNA重组技术,将克隆后的基因编码加以改造,或者人工组装成新的基因,再将上述基因通过载体引入挑选的宿主系统内进行表达,从而产生符合人类设计需要的“突变型”蛋白质分子。这种蛋白质分子只有表达了人类需要的性状,才算是实现了蛋白质工程的目标。2 蛋白质工程原理和基本操作2.1 分子设计由于基因工程的发展,人们已经可以运用基因重组等理论和方法去设计并制造出预想的各种性能的蛋白质。这种改变蛋白质的操作可以在蛋白质水平上,也可以在基因水平上。如基因水平的改变,是在功能基因开发的基础上,对编码蛋白质的基因进行改造,小到可改变一个核苷酸,大到可以加入或消除某一结构的编码序列。蛋白质水平的改变则主要是对制造出的蛋白质进行加工、修饰,如磷酸化、糖基化等。蛋白质的化学修饰条件剧烈,无专一性,而基因操作则比较方便,在实施基因操作时,必须预先知道是哪个氨基酸或哪几个氨基酸影响着蛋白质的性状。就现代生物技术发展水平看,大量新蛋白质通过检测,来确定改变的蛋白质是否具有预期的性状,技术上已是可行的。2.2 定点突变技术目前,在蛋白质工程中最常采用的技术是定点诱变技术,即在特定的位点改变基因上核苷酸的种类,从而达到改变蛋白质性状的目的。蛋白质工程发展至当代,利用专一改变基因中某个或某些特定核苷酸的技术,可以产生具有工业上和医药上所需性状的蛋白质。一般来讲对蛋白质所作的改造包括增强酶蛋白的催化能力、稳定性、专一性以及改善酶蛋白质的反应条件等几个方面,已为其大规模的应用创造了条件。3 蛋白质工程应用研究进展当前,蛋白质工程修饰、改造的蛋白质为数不算多,但进展较快。随着基因组测序的国际联合行动的快速进展,也带来并已出现了蛋白质高速发展的新阶段。3.1 在医药方面许多蛋白质工程的目标是设法提高蛋白质的稳定性。在酶反应器中可延长酶的半衰期或增强其热稳定性,也可以延长治疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。在这个领域已取得了一些重要研究成果。用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。如人的β-干扰素和白细胞-2是两种抗癌作用的蛋白质。但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。美国的Cetus公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特定癌细胞而不伤害正常细胞的特效。近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。另据实验,蛋白质工程还可以改变α1抗胰蛋白(ATT)。运用此工程技术在ATT的Met358和Ser359之间切开后,可以与嗜中性白细胞弹性蛋白酶迅速结合而引发抑制作用。在病理学的氧化条件下可导致Met358变成蛋氨酸硫氧化物使ATT不可能与弹性蛋白酶的弹性位点相结合。通过位点直接诱变,Met358被Val代替就成为抗氧化疗法的AAT突变体。含AAT突变体的血浆静脉替代疗法已经用于AAT产物基因缺陷疾病患者的治疗,并已取得明显疗效。3.2 在农业方面蛋白质工程正在成为改造农业,大幅度提高粮食产量的新途径。如植物光合作用是利用白光能将二氧化碳转化成贮成能量淀粉,在植物叶片中普遍存在着一种重要的起催化作用的酶,它能固定住二氧化碳,这种酶叫核酮糖-1.5-二磷酸羧化酶。而这种酶具有双重性:它既能固定二氧化碳,又会使二氧化碳在光照条件下通过光呼吸作用损失一半,即光合效率只有50%。现在。这种酶的三维结构已经搞清楚了。参与研究的工作人员认为,可以通过蛋白质工程改造这种酶,控制其不利于人需要的一面,从而大大提高其光合作用效率,增加粮食产量。近年来,美国坎布里奇的雷普里根公司的科研人员立题,以蛋白质工程作为设计优良微生物农药的新思路,他们实施对微生物蛋白质结构进行修改,仅此一举,使微生物农药的杀虫率提高了10倍。3.3 在工业方面蛋白质工程在工业上的应用取得的成果亦是很多。现以改变酶的动力学特性研制出高效除污酶为例说明其应用价值。酶的动力学基本规律为:酶(E)-底物(S)=酶-底物复合物(ES)=酶(E)+产物(P)在这个反应过程中有4个速率常数:E-S=ES=E+P在稳态阶段,ES形成速率与分解速率相等,这个速率就是Km(Michaelis常数)。在数值上,Km等于达到最大速率一半时的底物浓度。Vmax常在反应的初始阶段测定,反应进行中产物浓度将增加,K4则不可忽视,高浓度的底物会抑制酶活性。在底物低浓度时,酶的Km是关键的参数。如在枯草杆菌蛋白酶的活性位点内有一个Met残基,作为去污剂的一种组分,该酶要置于氧化条件下使用。利用位点直接诱变,用其他19种氨基酸的任何一种取代这个Met,这些突变酶在活性方面大不相同,除了CYS代替Met的突变酶外,其他突变酶的活性都下降,而Km值提高。含不可氧化氨基酸(如Cer,Ala或Len)的突变酶在1 mol/L H2O中不失活,而Net和CYS酶则迅速失活。研究者正是根据突变酶的动力学特性来确定枯草蛋白酶在去污剂中的应用,以提高其除污效率,加强去污作用。另外,美国、日本等国家的科学工作者利用蛋白质工程研制生物元件来取代“硅芯片”,研制生物计算机,开发生物传感器的蛋白质都取得了重大进展。还有利用蛋白质(酶)生产模仿羊毛、蚕丝、蜘蛛丝,其强度高、质量轻,均是蛋白质工程取得的应用性研究成果。3 展望蛋白质工程研究,从20世纪80年代初至今,由于分子生物学和技术科学相结合,已经完成了几十种蛋白质分子结构的改造。在蛋白质结构与其功能的研究上已获得很多有价值的检测资料。人们已经初步掌握了蛋白质工程的技术程序,这就是基因定位、诱变。在了解蛋白质三维结构与功能的基础上,对突变后的一维纤性肽链进行分子设计,从而构建全新的蛋白质分子。当今,在这个技术程序的控制手段方面已经取得了关键技术的突破。蛋白质工程的应用领域极为广泛,现在已对探索环境保护,控制和设计与DNA相互作用的某些调控蛋白,进一步实现控制遗传,改造生物体,创造符合人类需求新生物类型等方面发挥着重要作用。学者们普遍认为,蛋白质工程是在生物工程领地上崭露出的一片特富魅力的新芽。它不仅可以带动生物工程进一步发展,还可以推动与人类生产、生活关系密切的相关科学的发展,如抗蛋白质变性延缓衰老,遗传病的防治,农牧业遗传育种、航天科技、新型材料学等。

文章TAG:分子  分子设计  设计  下列  分子设计  
下一篇