合同变换矩阵的求法,老师请问用初等变换求合同矩阵是个什么过程谢谢
来源:整理 编辑:律生活 2023-03-09 05:32:16
本文目录一览
1,老师请问用初等变换求合同矩阵是个什么过程谢谢
构造分块矩阵AE对矩阵作初等变换, 目标将上子块分为对角矩阵方法: 作一列变换后, 作一个同类型的转置行变换
2,怎么用合同变换法求对角矩阵求大神详细说明考研线性代数百度知
合同变换,就是先使用初等列变换,然后再使用相对应当初等行变换也就是,做成对的初等列变换,和行变换,最后化成对角阵。

3,线性定常系统稳定性分析中怎么用合同变换法判定实对称矩阵的P的
实对称正定矩阵存在唯一的Cholesky分解P=LL^T,这里L是对角元大于零的下三角矩阵从合同变换的观点看,P=L*I*L^T就是用L这个变换把P合同到单位阵Cholesky分解可以用Gauss消去法来计算,所以可以作为实用的判别方法
4,矩阵合同变换是怎样操作的
矩阵合同变换:解:原式=∫<0,2π>dθ∫<0,2>rdr∫<r^2/2,2>r^2dz (作柱面坐标变换)=2π∫<0,2>r^3(2-r^2/2)dr=2π∫<0,2>(2r^3-r^5/2)dr=2π(2^4/2-2^6/12)=2π(8/3)=16π/3简介合同变换,亦称全等变换或正交变换,是欧氏几何中的一类重要变换,即使图形变为其全等图形的变换。如果欧氏平面(平面几何)或欧氏空间(立体几何)的点变换,把任意线段的两个端点变成等长线段的两个端点,则称其为合同变换。合同变换把几何图形变成合同(即全等)图形,保持线段长度不变,保持角度不变,并把直角变成直角。
5,关于矩阵合同变换
解:原式=∫<0,2π>dθ∫<0,2>rdr∫r^2dz (作柱面坐标变换) =2π∫<0,2>r^3(2-r^2/2)dr =2π∫<0,2>(2r^3-r^5/2)dr =2π(2^4/2-2^6/12) =2π(8/3) =16π/3。
6,合同矩阵中可逆矩阵的求法
这是个简单置换先交换1,3列,再交换2,3列即 1 0 00 1 00 0 1-->0 0 10 1 01 0 0-->0 1 00 0 11 0 0合同变换是行列同时相应变换(左乘C^T右乘C)上面记录下的就是列的变换,对应C
7,求合同矩阵转换中的P
构造分块矩阵AE同时, 对矩阵用初等列变换(同时对上半块用相应的初等行变换) 把上半块化为 B最后化为BP则P即为所求.p就是a的特征向量经过正交化、单位化以后拼成的矩阵 ,和a的相似对角化中p的求法完全一样。因为a是实对称阵 一定存在正交阵p (p的逆就是p的转置)把a化为对角阵
8,证明AB矩阵为合同矩阵的步骤应该是怎样的谢谢啦
2.矩阵合同(1)与合同矩阵能够经过合同变换变成矩阵存在可逆矩阵,使得;注意,秩相等是矩阵合同的必要条件,两个同级对称矩阵合同的本质是秩相等且正惯性指数也相等。(2)矩阵合同,则它们的秩相等,正惯性指数相等,反之则不一定成立。(3)合同与二次型有关,同一数域上的二次型与对称矩阵之间一一对应,因此矩阵合同一般针对的是对称矩阵2.矩阵合同(1)与合同 矩阵能够经过合同变换变成矩阵 存在可逆矩阵,使得;注意,秩相等是矩阵合同的必要条件,两个同级对称矩阵合同的本质是秩相等且正惯性指数也相等。(2)矩阵合同,则它们的秩相等,正惯性指数相等,反之则不一定成立。(3)合同与二次型有关,同一数域上的二次型与对称矩阵之间一一对应,因此矩阵合同一般针对的是对称矩阵
9,高等代数用合同变换法
利用初等变换的gauss消去法和lagrange配方法本质上是一样的,一个一个消元就行了1. 你先去把解线性方程组的gauss消去法看懂http://wenwen.sogou.com/z/q728537367.htm2. 解线性方程组的时候gauss消去法一般以行变换为主,也就是l_k....l_1a=l_k....l_1b这样做变换而对于二次型而言要采用合同变换,所以是像l_k....l_1al_1^t...l_k^t这样先假定消去过程中对角元不会为0的情况,比如a=x x x xx x x xx x x xx x x x先做一步行变换得到l_1a=x x x xo x x xo x x xo x x x然后把同样的变换作用到列上得到l_1al_1^t=x o o oo x x xo x x xo x x x然后对右下角继续做消去就行了如果碰到对角元为0的情况,先看这一列有没有非零元,如果没有那最好,因为此时矩阵形如o o o oo x x xo x x xo x x x直接归结为小问题如果有非零的非对角元,比如下面的例子o . x .. x x xx x x x. x x x对(1,3)两行做一个简单的线性组合(比如把第三行加到第一行上)就可以产生出一个非零对角元,相应地做一次列变换之后就回到了之前对角元非零的情况利用初等变换的gauss消去法和lagrange配方法本质上是一样的,一个一个消元就行了1. 你先去把解线性方程组的gauss消去法看懂http://wenwen.sogou.com/z/q728537367.htm2. 解线性方程组的时候gauss消去法一般以行变换为主,也就是l_k....l_1a=l_k....l_1b这样做变换而对于二次型而言要采用合同变换,所以是像l_k....l_1al_1^t...l_k^t这样先假定消去过程中对角元不会为0的情况,比如a=x x x xx x x xx x x xx x x x先做一步行变换得到l_1a=x x x xo x x xo x x xo x x x然后把同样的变换作用到列上得到l_1al_1^t=x o o oo x x xo x x xo x x x然后对右下角继续做消去就行了如果碰到对角元为0的情况,先看这一列有没有非零元,如果没有那最好,因为此时矩阵形如o o o oo x x xo x x xo x x x直接归结为小问题如果有非零的非对角元,比如下面的例子o . x .. x x xx x x x. x x x对(1,3)两行做一个简单的线性组合(比如把第三行加到第一行上)就可以产生出一个非零对角元,相应地做一次列变换之后就回到了之前对角元非零的情况
文章TAG:
合同变换矩阵的求法合同 变换 变换矩阵