怎么求合同变换矩阵,老师请问用初等变换求合同矩阵是个什么过程谢谢
来源:整理 编辑:律生活 2023-02-25 12:51:54
本文目录一览
1,老师请问用初等变换求合同矩阵是个什么过程谢谢
构造分块矩阵AE对矩阵作初等变换, 目标将上子块分为对角矩阵方法: 作一列变换后, 作一个同类型的转置行变换
2,矩阵合同变换是怎样操作的
矩阵合同变换:解:原式=∫<0,2π>dθ∫<0,2>rdr∫<r^2/2,2>r^2dz (作柱面坐标变换)=2π∫<0,2>r^3(2-r^2/2)dr=2π∫<0,2>(2r^3-r^5/2)dr=2π(2^4/2-2^6/12)=2π(8/3)=16π/3简介合同变换,亦称全等变换或正交变换,是欧氏几何中的一类重要变换,即使图形变为其全等图形的变换。如果欧氏平面(平面几何)或欧氏空间(立体几何)的点变换,把任意线段的两个端点变成等长线段的两个端点,则称其为合同变换。合同变换把几何图形变成合同(即全等)图形,保持线段长度不变,保持角度不变,并把直角变成直角。

3,关于矩阵合同变换
解:原式=∫<0,2π>dθ∫<0,2>rdr∫r^2dz (作柱面坐标变换) =2π∫<0,2>r^3(2-r^2/2)dr =2π∫<0,2>(2r^3-r^5/2)dr =2π(2^4/2-2^6/12) =2π(8/3) =16π/3。
4,矩阵合同的公式
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得CATC=B则称方阵A与B合同,记作 A?B。扩展资料合同矩阵合同矩阵,在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得CTAC=B,则称方阵A合同于矩阵B。中文名合同矩阵反身性任意矩阵都与其自身合同;对称性A合同于B,则可以推出B合同于A传递性A合同于B,B合同于C主条目正定二次型定义合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得则称方阵A与B合同,记作 A?B。例题一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。性质合同关系是一个等价关系,也就是说满足:1、反身性:任意矩阵都与其自身合同;2、对称性:A合同于B,则可以推出B合同于A;3、传递性:A合同于B,B合同于C,则可以推出A合同于C;4、合同矩阵的秩相同。矩阵合同的主要判别法:设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。资料来源网络若侵权联系删除
5,求合同矩阵转换中的P
构造分块矩阵AE同时, 对矩阵用初等列变换(同时对上半块用相应的初等行变换) 把上半块化为 B最后化为BP则P即为所求.p就是a的特征向量经过正交化、单位化以后拼成的矩阵 ,和a的相似对角化中p的求法完全一样。因为a是实对称阵 一定存在正交阵p (p的逆就是p的转置)把a化为对角阵
6,老师您好请问一下已知矩阵和其合同矩阵如何求使他们合同的可
A=PBPT此时可以使用增广矩阵B|I进行初等变换(先对B|I 作初等行变换,再对B作相应的初等列变换,这样交替进行)最终,左侧B化成A, 即增广矩阵可以化成A|P的形式于是就得到右侧的P矩阵这是个简单置换先交换1,3列,再交换2,3列即 1 0 00 1 00 0 1-->0 0 10 1 01 0 0-->0 1 00 0 11 0 0合同变换是行列同时相应变换(左乘c^t右乘c)上面记录下的就是列的变换,对应c
文章TAG:
怎么求合同变换矩阵怎么 合同 变换